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ABSTRACT

"'A new condition is shown to be equivalent to the other conditions of the Kreiss Matrix

. Theorem for power bounded families of matrices. This new condition is important for the
application of the theory of pseudo-difference operators to stability estimates for variable
coefficient finite difference equations. As an example of the usefulness of this new condition,

we use it to prove stability of the leap frog scheme for hyperbolic equations with variable

coeflicients.

AMS (MOS) Subject Classifications: 15A60, 65M15
Key Words: finite difference. Kreiss Matrix Theorem, resolvent, stability, symmetrizer

Work Unit Number 3 - Numerical Analysis and Scientific Computing

Sponsored by the United States Army under Contract No. DAAG29-80-C—-0041.

LT Lt S ,::':.
‘« st N ' ‘ 3
‘m" QQ‘ .: . .i. :'. k'\'t ::. '.‘..." :‘:o:.:q ! . | ‘:".:. ‘:‘.. %‘0% ':

) C
1‘99‘ v,‘l‘ (5'.‘....' .’"'T“ “ Wt UK

A gng }
el ey

n»'o ;‘u.uﬂ; ”h" LA !.l.nq-e ‘C“‘O'o iy
4‘, DA nl h NN 4 'lt v. 0 f
“"‘ : .l" ?. % "t‘i ' “ \‘.:‘




SIGNIFICANCE AND EXPLANATION

The existence of a symmetrizer is a vital part of the new stability estimate obtained
in {10| for general variable coefficient linear finite difference equations. It allows a Garding
inequality for pseudo-difference operators to be utilized and is the finite difference analogue
of the symmetrizer for partial differential equations. The theorem which appears in this
paper links the existing necessary and sufficient conditions for the power boundedness
of a family of matrices to the existence of a matrix symmetrizer. An example is given to
indicate how the new condition allows stability estimates to be obtained for finite difference

schemes which do not satisfy the hypotheses of previous stability theorems.
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AN EXTENSION OF THE KREISS MATRIX THEOREM

\ Bruce A. Wade
and

John C. Strikwerda

The Kreiss Matrix Theorem (2] gives necessary and sufficient conditions for the power
boundedness of a family of matrices. The power boundedness property is related to the
stability of variable coefficient finite difference equations which, in turn, is related to con-
vergence. In order to obtain stability and convergence estimates for variable coefficient
finite difference equations it is useful to introduce a new condition in the Kreiss Matrix
Theorem. This condition involves the construction of a matrix called a symmetrizer.

The symmetrizer is used in {10] to obtain stability estimates for variable coefficient
finite difference equations through the use of a Garding inequality and the theory of pseudo-
difference operators. A similar theory of pseudo-difference operators for regular elliptic
systems of difference equations was developed by Bube and Strikwerda in [1]. Michelson
6] has also developed a theory of pseudo-difference operators. The matrix constructed is
called a symmetrizer because it is the finite difference analogue of the symmetrizer for the
Cauchy problem in the theory of partial differential equations. We include an example of
the application of the new symmetrizer condition to the proof of the stability of the leap
frog difference method for variable coefficient problems.

Tadmor 9 generalized the Lax-Wendroff 5 sufficient condition for stability. The

Lax Wendroff version of the theorem involves the numerical radius of the amplification

Sponsored by the United States Army under Contract f\'o.~ DAAG29-80-C-0041.
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matrix while Tadmor’s condition uses a generalized numerical radius. The generalized
numerical radius condition was shown to be necessary and sufficient for the power bound-
edness of a family of matrices. We show how the new symmetrizer condition is related to
Tadmor’s condition. In the interest of showing this relationship, we include more implica-

tions in the proof than are necessary to establish the theorem.

Consider the vector space C™ and let A and 1 be m by m complex matrices with

Hermitian and positive definite. Define, for z,y € C™,

lZyyy=2-§, 7%= (z,1).
and
N
. Az
41 = sup 221,
z#0 '|z||

Define the -numerical radius of A to be

HNAz,z)
oo [ 3 ,_l-
ra(A) : il;% iz

The real part of a matrix A, namely % (A" = A), where » denotes the conjugate transpose,
will be denoted by R®A. Given two Hermitian matrices A and B, one says that A < B if|
for each z € C™.

{Az,z) < (Bz,z).

Given an infinite family of m by m complex matrices denoted by 7. the following the-
orem contains four known equivalent conditions as well as the new symmetrizer condition.

The original version was given by Kreiss in 2.




Theorem (Kreiss Matrix Theorem)

The following are equivalent:
A) There exists C4 > 0 such that for all A € 7 and foreachn € 2., ||A™] < Cq,.

R) There exists Cg > 0 such that for all A € Fand for all |z; > 1,

(2] - A) Y < Cr(lz; - 1)

H) There exists Cy > 0 such that for each A ¢ ¥ there is a positive definite, Hermitian
matrix H which satisfies C;'I1 < H < Cyl and A"HA < H.

N) There exist Cy > 0, C, > O such that for each A € ¥ there is a positive definite,
Hermitian matrix N, called a symmetrizer, which satisfies C",(,’I < N < Cn and, for

each |z] > 1.

R(N(I-2714)) > Co(1 - |2|" )1

Q1) There exists Cq > 0 such that for each A € 7 there exists a positive definite, Hermitian

matrix Q0 which satisfies C&‘I <N<Cqland forallnecZ,, rg(A™)<1.

The original paper of Kreiss 2! included the conditions A. R, H and another condition

which is commonly called S. We omit the condition S for brevity. The condition 1 was

introduced by Tadmor in [9]. The condition N, which will be called the symmetrizer
condition. is new. Although the symmetrizer condition may appear to be weaker that |
. Tadmor’s generalized numerical radius condition, we show directly that these conditions

are equivalent. thus elucidating the relationship between them.
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PROOF:

The proof that condition A implies the resolvent condition R and that R implies H are
contained in '2]. Kreiss proved that R implies H by first proving an intermediate condition,
which he called S. This is the most difficult part of the theorem and involves estimates on
the behavior of the eigenvalues, especially for those near the unit circle. Tadmor proved
in [9] that 1 implies A by utilizing the generalized Halmos inequality, rq(A") < (ra(4))",
(see {8,9]), and the inequality {jA}l < 2r;(A). This last inequality can be proved by writing
4 as the sum of its Hermitian and skew parts and noting that the spectral radius of a
normal matrix equals its spectral norm.

We now prove that the symmetrizer condition is equivalent to the others.

We begin by proving that condition H implies the symmetrizer condition. N. Assuming
H holds. let A € 7 and let H be the corresponding positive definite Hermitian matrix.

Expanding the relation

0<(I- z‘lA)'H(I— z714),

we have
0<H-2R(27"HA) + |2 "2A"HA
<H-2R(z"'HA)+2/"*H
= 2R (H(] - 27 'A)) + (|2!"* - 1) H.
Thus : )
5 (1~ 2z YWH < 5 (1- 2" H

<R(H - z"lA)),
and the symmetrizer condition follows with N taken as H.

The symmetrizer condition. N. implies 2. To see this. note that if N holds then
RIN( - z7'4)) > Co(1 - 127"

> 0.
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This implies that

R(N)>R(Nz"14), for all lz{>1.

Given z € C™, choose z such that

P
-5"’.0_;_?' -

- o

R((NAz,z)27') = |(NAz.1)\.

-~

Therefore,

(NAz,z)) < INz,z), for all z€C™,

which implies rn{A) < 1. This, together with the generalized Halmos inequality (8,9,
proves that condition ) holds.

Conversely, assume the condition 2 holds. We will show 'that this implies the sym-
metrizer condition, N. This part of the proof is included only to show the relation between
the symmetrizer condition and Tadmor’s generalized numerical radius condition. We have,

forx € C™. '
RQ(I-2714)z,2) = RNz,z) - R{z7'0Az, 1)

> {0z, z) — 2/7'(NAz, 1!
>0z, z) — |27 YN, 1)

= (1-1271)Qz,2)

>Cq' (1 -1z ") iz, 2).

This implies the symmetrizer condition with N := Q, and Cy := C, and Cy := Cal.
The symmetrizer condition is also closely related to the resolvent condition. If condi-

tion N holds. then _
Co(l-iz2 )< IR(N(I-2""4)),,
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‘, where the last inequality follows from observing | N! = w;(N) < Cx. and the first follows
T A
[y »

' from the Cauchy-Schwarz inequality. This is easily seen to be equivalent to the condition
i "

K R. The proof of the theorem is complete. f
t("; )
f'v“ We now present a simple example which illustrates the use of the symmetrizer condi-
% tion in proving the stability of variable coeflicient finite difference equations. The methods
RN . A, .. .

A of Kreiss 3!, Parlett {7} and Lax and Nirenberg {4] do not apply to the difference scheme
;
:; given here: however. the symmetrizer condition can be used to obtain the stability esti-

M

mate. We make use of the calculus of pseudo-difference operators in the form developed
“'l'.

"‘ 1 -

:" : by Bube and Strikwerda {1: and Michelson {6!. A complete presentation of the applica-

At
.:::.

b tion of the symmetrizer condition to stability and convergence estimates of general finite
;2' difference equations along with applications will be presented in {10
\ " '

N . . . e el
:’%’ Consider the variable coeflicient initial value problem
!
e uy = a(z,t)u,, t>0, r€R
B ¥
5e8 u(z,0) = ug(z),

. where uy(-) € L?(R) is a scalar valued function and a(z,t) is constant outside of a compact
& set. We approximate the partial differential equation by the leap frog difference scheme
¢
;§,‘: By = N (0P —vh ), n>1, meZ
N

[/ | 3
D v 1 = up(mh) (1)
P
- U © = Vg + EAam.n (tmar = Vm-1) -

L.

:‘ where a,, » := a(mh.nk) and X := k/h is constant. We assume that sup, , Ala(z,t)| < 1.
\5:,‘ Define the discrete function
;l' "

%)
nh [(1/2k)v9,,. ifn=-1

] . — ] A M .

:::, Ap = 4 (1/2k) (vp, - dAamoltg. ) =ty y)). ifn=0:

“t 0. else,

:‘, .

% :

&

0
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then it is easv to check that the difference equation (1) is equivalent to
vl = un T = Aamon (Ve — Umey) + 2kAT, nmel, (2)

where we now consider the difference equation as being for all time levels and take v" to
be 0 if n is negative. Note that A" essentially acts as a “delta function”and its nonzero
elements are of order 1/k.

We now reduce this difference scheme to a itwo level scheme. If we define

(vn+l)
w;n —— m

m = vn ?
m

and

equation (2) may be written as
Wr = G(m,n)Wni ! + kFZ, nmelZ (3)

where

Glmin) o= (Aa,,,,,, (-1 (1))

and T is the translation operator in z.

The symbol of the difference operator, G, is defined to be

2M\ia,, nsinfh 1 )

G(m,n,¢) = < I 0 &<

We note that for each value of (m,n) the eigenvalues of G;(m.n. £) are on the unit circle, in
particular the scheme is nondissipative. Therefore. the method of Kreiss 3. and Parlett '7,

for proving stability does not apply. The sharp Garding inequality of Lax and Nirenberg

*, . W, ¥, 1” 3'.\‘. # ".l l' ..'l '| " " g - . ] - 0y C% M) N Bl
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o, (4] also does not apply since the norm of the symbol is not bounded by 1. We will utilize
1 the symmetrizer condition in order to prove that this difference scheme is stable. J

The theory of pseudo-difference operators is employed in the context of the discrete

::‘!'«' Sobolev space T
Hyp:={v:hZ xkZ —-R: 9(£,s) € L¥(Dy4)},

s where Dy, p = {(£.7) ¢ €1 < %, 7| £ £}, s = m +ir, with n > ne > 0, and (£, )
denotes the discrete Fourier transform in space and Laplace transform in time of v}, defined
R by

3 e hk S°£

_ —snk~i{mh_n
o v(&,8) = Py e Up,-
g nm=—oc

o The corresponding norm is

2 —an n 2
nth fan = hk E
::‘.G 'n.h

mn=—0o0
s See Michelson :6; or Wade ;10! for details on the pseudo-difference operator theory as well
-
;' 3 as the discrete transform and discrete Sobolev space.

Consider the family of matrices

7= {e"’"ké(m,n, §):mneZ, &< ’E

}

where n, is any positive number. Since the eigenvalues of every element of ¥ are distinct.
“ inside the unit circle and uniformly separated, it is clear that the resolvent equation holds.

Therefore, there is a constant C, > 0 such that for each element of 7 there is a svmmetrizer,

N(m.n, €). which satisfies

Mg R (N(m.n. €)1 - e"’"é(m.n. f)) SCu (1 -€e ") 1. n>ne>0. (4)
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TR

We now apply a Gérding inequality for pseudo-difference operators. (see [1), [6:, or

R
-~

110!). The Girding inequality essentially says that the condition (4), which holds for the

ol

i#
)

symbol of the difference operator, is also true for the variable coefficient operator modulo

Jower order terms. We have

oaTEWI, ()

Co (L5 ) IW I3 < B (9,1 - Gl m)S ™))

where S is the shift operator in t.
By choosing 7o larger, and the constant Co smaller, and using that W satisfies the

equation (3), this implies

1_e~ﬂk ‘ v . 012 ~
Col =7 W2, <RW,NF), ,<CWL, n2>no

The last inequality follows from the fact that the grid function F is supported on only two
time levels. In terms of the original variable vy, this is
1—e "k

(—-—————k ) lie)|2 , < Ch Z w22, n >nq >0, (6)

' mecZ
for some constant C.

The estimate (6) is equivalent to the standard notion of stability. By ‘standard notion

of stability” we mean the definition which requires the space norm of the solution at any
time level n to be bounded by a constant depending on nk times the space norm of the

initial data of the difference scheme. The reader is referred to the paper of Bube and

Strikwerda 1 for a similar estimate which uses a Garding's inequality for elliptic systems.

Finaliv we comment on the reason that the symmetrizer condition allows estimates
for more general difference schemes. The previous methods for proving stability involved

9
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- the conditions H or f). These conditions involve nonlinear aperations on the elements of
R ,j% the family of matrices, while condition N is essentially a linear operation on the elements
of the family. The condition H contains the term A" H A and the condition 0 contains
Ll the absolute value of (f)-,-}, both of which are nonlinear operations on the matrices in the
X

‘::%: family. The symmetrizer condition utilizes only the multiplication of elements of the family
| by a matrix, in addition to the operation of taking the real part of a matrix. The use of
only linear relations allows for greater flexibility in the application of Girding inequalities.

Estimates for more general schemes as well as other results are contained in {10].
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